Includes six pre-registered replication studies testing whether participants feel more powerful if they adopt expansive as opposed to constrictive body postures. In the data set power_pose_unfamiliar
, only those participants are included who were unfamiliar with the power pose effect.
power_pose
power_pose_unfamiliar
A data frame with three variables:
study
Authors of original study
n_high_power
number of participants in high-power condition
n_low_power
number of participants in low-power condition
mean_high_power
mean rating in high-power condition on a 5-point Likert scale
mean_low_power
mean rating in low-power condition on a 5-point Likert scale
sd_high_power
standard deviation of ratings in high-power condition
sd_low_power
standard deviation of ratings in low-power condition
t_value
t-value for two-sample t-test
df
degrees of freedom for two-sample t-test
two_sided_p_value
two-sided p-value of two-sample t-test
one_sided_p_value
one-sided p-value of two-sample t-test
effectSize
Cohen's d, the standardized effect size (high vs. low power)
SE
Standard error of Cohen's d
Data frame with 6 rows and 13 variables
An object of class data.frame
with 6 rows and 13 columns.
See Carney, Cuddy, and Yap (2010) for more details.
Carney, D. R., Cuddy, A. J. C., & Yap, A. J. (2010). Power posing: Brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychological Science, 21, 1363–1368.
Gronau, Q. F., Erp, S. V., Heck, D. W., Cesario, J., Jonas, K. J., & Wagenmakers, E.-J. (2017). A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123-138. doi:10.1080/23743603.2017.1326760
data(power_pose)
head(power_pose)
#> study n_high_power n_low_power mean_high_power mean_low_power
#> 1 Bailey et al. 46 48 2.619565 2.385417
#> 2 Ronay et al. 53 55 2.122642 1.945455
#> 3 Klaschinski et al. 101 99 3.001980 2.727273
#> 4 Bombari et al. 99 101 2.242424 1.990099
#> 5 Latu et al. 100 100 2.575000 2.445000
#> 6 Keller et al. 135 134 2.733333 2.578358
#> sd_high_power sd_low_power t_value df two_sided_p_value one_sided_p_value
#> 1 0.9320514 0.9353551 1.215348 92 0.22734289 0.11367144
#> 2 0.7652655 0.7915803 1.182015 106 0.23984447 0.11992223
#> 3 0.8234051 0.9000928 2.252778 198 0.02537006 0.01268503
#> 4 0.9268215 0.8543424 2.002484 198 0.04659697 0.02329848
#> 5 0.7893707 0.9767370 1.035168 198 0.30185311 0.15092656
#> 6 1.0541319 0.9978444 1.238098 267 0.21676741 0.10838370
#> effectSize SE
#> 1 0.2507640 0.2071399
#> 2 0.2275180 0.1931046
#> 3 0.3186069 0.1423228
#> 4 0.2832082 0.1421356
#> 5 0.1463949 0.1416107
#> 6 0.1509773 0.1221166
# Simple fixed-effects meta-analysis
mfix <- meta_fixed(effectSize, SE, study,
data = power_pose
)
mfix
#> ### Bayesian Fixed-Effects Meta-Analysis ###
#> Prior on d: 't' (location=0, scale=0.707, nu=1) with support on the interval [-Inf,Inf].
#>
#> # Bayes factors:
#> (denominator)
#> (numerator) fixed_H0 fixed_H1
#> fixed_H0 1.0 0.0223
#> fixed_H1 44.8 1.0000
#>
#> # Posterior summary statistics of fixed-effects model:
#> mean sd 2.5% 50% 97.5% hpd95_lower hpd95_upper n_eff Rhat
#> d 0.219 0.061 0.1 0.219 0.339 0.098 0.337 NA NA
plot_posterior(mfix)